
www.manaraa.com

Fault-Tolerance by Replication

in Distributed Systems
?

Rachid Guerraoui Andr�e Schiper

D�epartement d'Informatique
Ecole Polytechnique F�ed�erale de Lausanne

1015 Lausanne, Switzerland

Abstract. The paper is a tutorial on fault-tolerance by replication in
distributed systems. We start by de�ning linearizability as the correct-

ness criterion for replicated services (or objects), and present the two

main classes of replication techniques: primary-backup replication and
active replication. We introduce group communication as the infrastruc-

ture providing the adequate multicast primitives to implement either

primary-backup replication, or active replication. Finally, we discuss the
implementation of the two most fundamental group multicast primitives:

total order multicast and view synchronous multicast.

1 Introduction

Dependability, i.e. reliability and availability, is one of the biggest trends in

software technologies. In the past, it has been considered acceptable for services

to be unavailable because of failures. This is rapidly changing: the requirement

for high software reliability and availability is continually increasing in domains

such as �nance, booking-reservation, industrial control, telecommunication, etc.

One solution for achieving fault-tolerance is to build software on top of fault-

tolerant (replicated) hardware. This may indeed be a viable solution for some

application classes, and has been successfully pursued by companies such as

Tandem and Stratus. Economic factors have, however, motivated the search for

cheaper software-based fault-tolerance, i.e. software-based replication. While this

principle is readily understood, the techniques required to implement replication

pose di�cult problems. The paper presents a survey of the techniques that have

been developed, since the mid-eighties, to implement replicated services (called

also objects).

To discuss fault-tolerance, one need to specify the types of failures that are

considered. Let us assume the following general model of a distributed system:

the system consists of a set of processes connected through communication links,

which are used by the processes to exchange messages. A process can either

be correct, or incorrect. A correct process is a process that behaves according

to its speci�cation. An incorrect process is either a process that crashes, or a

process that behaves maliciously. A crashed process stops receiving or sending

? Appears in Proc. Reliable Software Technologies { Ada-Europe'96, Springer Verlag,

LNCS 1088, 1996.

www.manaraa.com

messages, while a malicious process might send messages that do not follow the

speci�cation. We consider in the paper only crash failures, and ignore malicious

behavior (also called Byzantine failures).

When considering the behavior of communication links, we distinguish two

basic system models: the asynchronous system model, and the synchronous sys-

tem model. The synchronous system model assumes that the transmission delay

of the messages sent over the communication links is bounded by a known value.

The asynchronous system model does not set any bound on the transmission

delay of messages. This makes the asynchronous model very attractive from

a practical point of view, and we consider this model in the paper. The only

property that we require from the communication links is channel reliability: a

message m sent by a process pi to a process pj is eventually received by pj , if

both pi and pj are correct. Thanks to the possibility of message retransmission,

the channel reliability property does not prevent link failures, if we assume that

link failures are eventually repaired.

This modelization characterizes the distributed system that we consider. The

rest of the paper is organized as follows. Section 2 de�nes the correctness crite-

rion for replicated servers, called linearizability. This criterion gives to the client

processes the illusion of non-replicated servers. Section 3 introduces the two main

classes of replication techniques that ensure linearizability. These two classes are

the primary-backup technique, and the active replication technique. Section 4

introduces group communication as the framework for the de�nition of the mul-

ticasts primitive required to implement primary-backup replication and active

replication. Section 5 discusses the implementation of the two most important

group multicast primitives: total order multicast and view synchronous multi-

cast. Section 6 concludes the paper by mentioning existing distributed platforms

that support replication.

2 Replica consistency

2.1 Basic model and notations

We consider a set of sequential processes P = fp1; p2; : : : ; png interacting through

a set X of objects. An object has a state accessed by the processes through a

set of operations. An operation by a process pi on an object x 2 X is a pair

invocation/response. After issuing an invocation, a process is blocked until it

receives the matching response. The operation invocation is noted [x op(arg) pi],

where arg are the arguments of the operation op. The operation response is noted

[x ok(res) pi], where res is the result returned. The pair invocation/response is

noted [x op(arg)/ok(res) pi].

In order to tolerate process crash failures, a \logical" object must have sev-

eral \physical" replicas, located at di�erent sites of the distributed system. The

replicas of an object x are noted x1; : : : ; xl. Invocation of replica xj located on

site s is handled by a process pj also located on s. We assume that pj crashes ex-

actly when xj crashes. Replication is transparent to the client processes, which

www.manaraa.com

means that replication does not change the way the invocation of operations,

and the corresponding responses, are noted.

2.2 Consistency criteria

A consistency criterion de�nes the result returned by an operation. It can be seen

as a contract between the programmer and the system implementing replication.

Three main consistency criteria have been de�ned in the literature: lineariz-

ability [21], sequential consistency [24] and causal consistency [2]. In all three

cases, an operation is performed on the most recent state of the object. The three

consistency criteria di�er however in the de�nition of the most recent state. Lin-

earizability is the most restrictive of the three consistency criteria (linearizability

de�nes the strongest consistency criterion), whereas causal consistency de�nes

the weakest of the three consistency criteria. Both linearizability and sequen-

tial consistency de�ne what is informally called a strong consistency criterion,

whereas causal consistency de�nes a weak consistency criterion. Causal consis-

tency includes sequential consistency (i.e. an execution that satis�es sequential

consistency also satis�es causal consistency), and sequential consistency is in-

cluded in linearizability (i.e. an execution that satis�es linearizability also satis-

�es sequential consistency).

Most applications require strong consistency, i.e. linearizability or sequential

consistency, as it provides the programmers with the illusion of non-replicated

objects. We consider here only linearizability. The reason for considering lineariz-

ability, rather than sequential consistency, is justi�ed by practical considerations.

It turns out that linearizability is easier to implement, rather than just sequential

consistency. In other words, most of the implementations of strong consistency

turn out to ensure linearizability.

2.3 Linearizability

We give here an informal de�nition of linearizability. A formal de�nition can be

found in [21]. Let O be an operation, i.e. a pair invocation/response

[x op(arg)/ok(res) pi]. Consider a global real-time clock, and let tinv(O) be the

time at which pi invokes the operation op on object x, and tres(O) the time at

which the matching response is received by pi. Two operations O and O0 are said

to be sequential, noted O � O0, if the response of O precedes the invocation of

O0, i.e. if tres(O) < tinv(O
0). Two operations O and O0 are said to be concurrent

if neither O � O0 nor O0 � O hold. We note OjjO0 two concurrent operations.

Using the � relation, we de�ne linearizability as follows. An execution E is

linearizable if there exists a sequence S including all operations of E such that

the following two conditions hold:

{ for any two operations O and O0 such that O � O0, O appears before O0 in

the sequence S;

{ the sequence S is legal, i.e. for every object x, the subsequence of S of which

operations are on x, belongs to the sequential speci�cation of x.

www.manaraa.com

To illustrate the de�nition, consider an object x de�ning a FIFO queue (ini-

tially empty) with the enqueue (noted enq) and dequeue (noted deq) operations,

and an execution with the following invocations/responses:

{ at time t = 1: [x enq(a) pi]

{ at time t = 2: [x enq(b) pj]

{ at time t = 3: [x ok() pi]

{ at time t = 4: [x ok() pj]

{ at time t = 5: [x deq() pi]

{ at time t = 6: [x deq() pj]

{ at time t = 7: [x ok(b) pi]

{ at time t = 8: [x ok(a) pj]

The execution consists thus of four operations: the enqueue operation O1 by pi,

invoked at global time t = 1 and completed at time t = 3; the enqueue operation

O2 by pj, invoked at time t = 2 and completed at time t = 4; the dequeue

operation O3 by pi, invoked at time t = 5 and completed at time t = 7; and

the dequeue operation O4 by pj, invoked at time t = 6 and completed at time

t = 8. We have O1jjO2, O3jjO4, and O1; O2 � O3; O4. The above execution is

linearizable, as we can exhibit the following legal sequence S = [O2; O1; O3; O4].

The sequence S is legal as it belongs to the sequential speci�cation of a FIFO

queue: b is enqueued �rst (operation O2), and then a (operation O1), thus the

�rst dequeue operation O3 correctly returns b, and the second dequeue operation

O4 correctly returns a.

Consider now that operation O4 had returned b at time t = 8. In this case,

the execution is not linearizable as no sequence that belongs to the sequential

speci�cation of a FIFO queue, can be constructed from the execution. We discuss

in the next section circumstances under which this could have happened.

2.4 Ensuring linearizability

Consider a FIFO queue x, which, in order to be fault-tolerant, is implemented

by two replicas x1, x2. Consider the execution of Section 2.3, and assume that

the replicas observe the following sequence of events:

{ replica x1 receives the invocations in the following order: (1) [x enq(b) pj],

(2) [x enq(a) pi], (3) [x deq() pi], (4) [x deq() pj];

{ replica x2 receives the invocations in the following order: (1) [x enq(a) pi],

(2) [x enq(b) pj], (3) [x deq() pi], (4) [x deq() pj].

Each replica handles the invocations sequentially, in the order they are received.

Thus replica x1 sends the responses ok(b) to pi, and ok(a) to pj, whereas replica

x2 sends the replies ok(a) to pi and ok(b) to pj . If both pi and pj consider

the responses received from replica x1, we get the execution of Section 2.3,

which is linearizable. However, if pi considers the response from x1, whereas pj
considers the response from x2, then both processes get the response ok(b), and

the execution is not linearizable.

www.manaraa.com

The problem with this scenario, is that both replicas x1 and x2 do not receive

the invocations in the same order. A similar problem can occur if, because of

the crash of a client process, one replica, say x1, handles an invocation, whereas

the other replica, i.e. x2, does not. A su�cient condition to ensure linearizability

is to have the replicas agree on the set of invocations they handle, and on the

order according to which they handle these invocations These conditions can be

expressed more formally as follows:

Atomicity. Given an invocation [x op(arg) pi], if one replica of an object x

handles this invocation, then every correct (i.e. non-crashed) replica of x

also handles the invocation [x op(arg) pi].

Order. Given two invocations [x op(arg) pi] and [x op(arg) pj], if two replicas

x1 and x2 handle both invocations, they handle them in the same order.

3 Replication techniques

We have introduced linearizability as the correctness criterion for replicated ob-

jects. We present in this section two fundamental classes of techniques that

ensure linearizability: (1) the primary-backup replication technique, and (2) the

active replication technique. In the �rst technique, one process, called the pri-

mary, ensures a centralized control. There is no such centralized control in the

second technique. We then present read/write techniques that have been designed

in the context of �le systems and databases.

3.1 Primary-backup replication

In the primary-backup strategy [8], one of the replicas, called the primary, plays

a special role (Fig. 1): it receives the invocations from the client process, and

sends the response back. Given an object x, its primary replica is noted prim(x).

The other replicas are called the backups. The backups interact with the primary,

and do not interact directly with the client process.

Consider the invocation [x op(arg) pi] issued by pi. In the absence of crash

of the primary, the invocation is handled as follows:

{ Process pi sends the invocation op(arg) to the replica prim(x).

{ The primary prim(x) receives the invocation and performs it. At the end of

the operation, the response res is available, and the state of prim(x) is up-

dated. At that point, prim(x) sends the update message (invId; res; state-

update) to the backups, where invId identi�es the invocation, res is the

response, and state-update describes the state update of the primary, re-

sulting from the invocation invId. Upon reception of the update message,

the backups update their state, and send back an acknowledgment to the

primary (the need for invId and res is discussed below).

{ Once the primary has received ack from all correct (i.e. non-crashed) back-

ups, the response is sent to pi
2.

www.manaraa.com

x op(arg) pi x ok(res) p
i

invocation response

ack

ack

object x

update

1primary: replica x

backup: replica x 2

backup: replica x 3

(1) (2) (3)

client process p i

Fig. 1. Primary-backup technique

If the primary does not crash, then the above scheme obviously ensures lin-

earizability: the order in which the primary receives the invocation de�nes the

total order on all the invocations to the object. Ensuring linearizability despite

the crash of the primary is more di�cult. In the case of the crash of the pri-

mary, three cases can be distinguished: (1) the primary crashes before sending

the update message to the backups ((1) in Fig. 1), (2) the primary crashes after

sending the update message, but before the client receives the response ((2) in

Fig. 1), and (3) the primary crashes after the client has received the response

((3) in Fig. 1). In all three cases, a new unique primary has to be selected. In

the cases 1 and 2, the client will not receive any response to its invocation, and

will suspect a failure. After having learned the identity of the new primary, the

client will reissue its invocation. In case 1, the invocation is considered as a

new invocation by the new primary. Case 2 is the most di�cult case to handle.

Atomicity has to be ensured: either all the backups receive the update message,

or none of them receive it (we come back to this issue in Section 4). If none of

the backups receive the message, case 2 is similar to case 1. If all of the backups

receive the update message, then the state of the backups is updated by the

operation of the client process pi, but the client does not get the response, and

will reissue its invocation. The information (invId, res) is needed in this case, to

avoid handling the same invocation twice (that would produce an inconsistent

state if the invocation is not idempotent). When the new primary receives the

invocation invId, rather than handling the invocation, it immediately sends the

response res back to the client.

If we assume a perfect failure detection mechanism, apart from the atomicity

issue raised above, the primary-backup replication technique is relatively easy to

implement. The implementation becomes much more complicated in the case of

an asynchronous system model, in which the failure detection mechanism can-

not be reliable. The view-synchronous communication paradigm, presented in

Section 4, de�nes the communication semantics that ensures correctness of the

2 A primary-backup protocol is called blocking if the primary cannot send the reply
to the client before having received a certain number of acks from the backups. A

non-blocking protocol is possible only under very speci�c system assumptions [8].

www.manaraa.com

x op(arg) pi x ok(res) p
i

object x

invocations
responses

replica x 1

2replica x

3
replica x

client process p
i

Fig. 2. Active replication technique

primary-backup technique in the case of an unreliable failure detection mecha-

nism.

One of the main advantages of the primary-backup technique, is to allow

for non-deterministic operations. This is not the case with the active replication

technique described below.

3.2 Active replication

In the active replication technique, also called \state-machine approach" [33], all

replicas play the same role: there is here no centralized control, as in the primary-

backup technique. Consider an object x, and the invocation [x op(arg) pi] issued

by pi (Fig. 2):

{ The invocation op(arg) is sent to all the replicas of x.

{ Each replica processes the invocation, updates its state, and sends the re-

sponse back to the client pi.

{ The client waits until either (1) it receives the �rst response, or (2) it receives

a majority of identical responses.

If the replicas do not behave maliciously (i.e. if Byzantine failures are ex-

cluded) then the client process waits only for the �rst response. If the replicas

can behave maliciously (Byzantine failures), then 2f + 1 replicas are needed

to tolerate up to f faulty replicas [33]. In this case the client waits to receive

f + 1 identical responses.

The active replication technique requires that the invocations of client pro-

cesses be received by the non-faulty replicas in the same order. This requires

an adequate communication primitive, ensuring the order and the atomicity

property presented in Section 2. This primitive is called total order multicast or

atomic multicast. The precise semantics of the total order multicast primitive is

given in Section 4.

Apart from the Byzantine failure issue, the tradeo�s between active replica-

tion and primary-backup replication are the following:

www.manaraa.com

{ Active replication requires the operations on the replicas to be deterministic,

which is not the case with the primary-backup technique. \Determinism"

means that the outcome of an operation depends only on the initial state

of the replica, and on the sequence of previous operations performed by the

replica.

{ With active replication, the crash of a replica is transparent to the client pro-

cess: the client never needs to reissue a request. With the primary-backup

technique, the crash of the backups is transparent to the client, but not the

crash of the primary. In the case of the crash of the primary, the latency

experienced by the client (i.e. the time between the invocation and the re-

ception of the response) can increase signi�cantly. This can be unacceptable

for real-time applications.

{ The active replication technique uses more resources than the primary-

backup technique, as the invocation is processed by every replica.

3.3 Read/write techniques

Several replication techniques have been introduced in the speci�c context of

�le systems and databases. These techniques can be viewed as combination of

primary backup and active replication techniques, with the additional assump-

tions that (1) replicated objects can be accessed (only) through read and write

operations, and (2) an underlying concurrency control protocol (ensuring total

order) is provided.

The available copies replication method [15] ensures atomicity by a \read

one/write all" technique: a read operation can be performed on any available

copy, while a write operation must be executed on all available copies. The avail-

able copies are de�ned by a reliable failure detection mechanism. Whenever a

copy xk of some object x crashes, then xk is removed from the set of available

copies. The requirement of a reliable failure detection mechanism clearly means

that the technique does not prevent inconsistencies in the case of communication

link failures. Quorum methods have been introduced to prevent inconsistencies

in the case of link failures. The basic idea was initially introduced by Gi�ord [14];

it consists in assigning votes to every replica of an object x, and de�ning read

quorums and write quorums such that (1) read quorums and write quorums

intersect, and (2) two write quorums intersect. Thus any read operation is per-

formed at least on one replica that has \seen" all the preceding write operations:

this ensures the atomicity condition. As we have mentioned above, the ordering

condition is assumed to be guaranteed by the underlying transactional system

(e.g. through a locking mechanism).

The above technique is called static voting, as the read and write quorums do

not change during the whole life-time of the system. Static voting has a serious

drawback in case of failures, since quorums can be become impossible to obtain.

Dynamic voting has been introduced by Davcec and Burkhard [12] to overcome

this problem. The basic idea is that after a crash, the system recon�gures to a

new subset of replicas, on which new quorums are de�ned. The dynamic voting

techniques have been extended to allow non identical read and write quorums by

www.manaraa.com

El Abbadi and Toueg [1]. The quorum technique has been extended to general

operations (rather than just read/write operations) by Herlihy [20].

4 Group communication

The group abstraction constitutes the adequate framework for the de�nition of

the multicast primitives required to implement the replication techniques intro-

duced in the previous section. Consider a replicated object x. A group, noted

gx, can abstractly represent the set of replicas of x: the members of gx are the

replicas of x, and gx can be used to address a message to the set of replicas of x.

A group constitutes a convenient logical addressing facility: sending a message

to all the replicas of x can be done without explicitly naming the set of replicas

of object x.

4.1 Static groups vs dynamic groups

There are two fundamentally di�erent types of groups: static groups and dynamic

groups. A static group is a group whose membership does not change during the

whole life-time of the system. This does not mean that members of a group gx are

not supposed to crash. It simply means that the membership is not changed to

re
ect the crash of one of its members: a replica xk, after its crash, and before a

possible recovery, remains a member of the group gx. Static groups are adequate

in the context of active replication, as active replication does not require any

speci�c action to be taken in the case of the crash of one of its replicas. This

is not true for the primary-backup replication technique: if the primary crashes,

the membership of the group has to be changed, in order to elect a new primary.

A dynamic group is a group whose membership changes during the life-time

of the system. The membership changes for example as the result of the crash

of one of its member: a crashed replica xk is removed from the group. If xk later

recovers, then it rejoins gx. The notion of view is used to model the evolving

membership of gx. The initial membership of gx is noted v0(gx), and vi(gx) is

the ith membership of gx. The history of a group gx can thus be represented as

a sequence of views: v0(gx); v1(gx); : : : ; vi(gx); : : : [31, 7].

4.2 Group communication and active replication

We have seen in Section 3.2 that active replication requires a total order multicast

primitive. Let gx be a group: we note TOCAST (m; gx) the total order multicast

of message m to the group gx. This primitive can formally be de�ned by the

following three properties:

Order. Consider the two primitives TOCAST (m1; gx) and TOCAST (m2; gx),

and two replicas xj and xk in gx. If x
j and xk deliver m1 and m2, they

deliver both messages in the same order.

www.manaraa.com

Atomicity. Consider the primitive TOCAST (m; gx). If one replica xj 2 gx
delivers m, then every correct replica of gx also delivers m.

Termination. Consider the primitive TOCAST (m; gx) executed by some pro-

cess pi. If pi is correct, i.e. does not crash, then every correct replica in gx
eventually delivers m.

The above properties consider message delivery and not message reception. Basi-

cally, a replica will �rst receive a message, then perform some coordination with

other replicas, to guarantee the above properties, and then deliver the message,

i.e execute the invoked operation.

The termination condition is a liveness condition: it prevents the trivial im-

plementation of the order and atomicity conditions, consisting in never delivering

any message. A liveness condition ensures progress of the system. Implementa-

tion of the TOCAST primitive is discussed in Section 5.

The above de�nition of TOCAST uses the notion of a \correct" replica. This

is a tricky issue in a system model where replicas can crash, and later recover.

If a replica xk has crashed at some time t, then xk has no obligation to deliver

any message. If later, at time t0 > t, the replica xk recovers, then xk should have

delivered all messages multicast to gx up to time t0! This problem is handled by

the mechanism called state transfer: when a replica xk recovers after a crash, the

state transfer mechanism allows xk to get, from another operational replica xj

in gx, an up-to-date state, including all the messages that have been TOCAST

to gx.

State transfer. State transfer can be implemented as follows, using the TO-

CAST primitive. Let x3 be a replica that recovers after a crash (Fig. 3):

{ The replica x3 starts by executing TOCAST (state-req; gx), where state-

req is a message requesting the state, and containing the identity of the

replica x3.

{ Any replica, upon delivery of state-req, sends its current state to x3. Actu-

ally, it is not necessary for every replica to send its state to x3. In Figure 3,

only x1 sends its state to x3. We do not discuss such an optimization here.

Note that the state is not sent using the TOCAST primitive.

{ Replica x3 waits to deliver its own state-req message, ignoring any message

delivered before the state-req message (e.g. message m1 in Figure 3). Once

the message state-req is delivered, x3 waits to receive the current state from

one of the members of gx. In the meantime, x3 bu�ers all the messages

delivered after state-req (e.g. message m2 in Figure 3). Upon reception of

the \state" message, x3 initializes its state, and then handles the sequence

of bu�ered messages, (i.e. x3 updates its state accordingly). Once this is

done, replica x3 handles as usual all the messages delivered after the \state"

message.

www.manaraa.com

replica x 1

2replica x

3
replica x

state−req

m1

m2

state

RECOVERY

X

group g x

client process

client process

Fig. 3. State transfer (m1, m2 and state-req are TOCAST messages)

4.3 Group communication and primary-backup replication

The primary-backup replication scheme does not require a TOCAST primitive.

This is because the primary de�nes the order of the invocations. However, the

primary-backup technique requires dynamic groups, in order to de�ne a new

primary whenever the current primary has crashed.

The primary for an object x can easily be de�ned based on the sequence of

views of the group gx. Assume that in any view vi(gx), the replicas are ordered

according to some deterministic rule R. The primary can then be de�ned, for

every view, as the �rst replica according to the rule R. As an example, given

vi(gx) = fx1; x2; x3g, and the ordering R de�ned by the replica's number, the

primary for view vi(gx) is x
1. If later a new view vi+1(gx) = fx2; x3g is de�ned,

replica x2 becomes the new primary. As every view vi(gx) is delivered to all

the correct members of gx, every replica is able to learn the identity of the

primary. Notice also that, given the sequence of views de�ning the history of a

group, it is actually irrelevant whether a replica that is removed from a view has

really crashed, or was incorrectly suspected to have crashed. In other words, it

is irrelevant whether the failure detection mechanism is reliable or not.

To summarize, the primary-backup technique uses the primary to order the

invocations, but requires a mechanism to order the views. Ensuring the order

on the views is however not su�cient to ensure the correctness of the primary-

backup replication technique. To illustrate the problem, consider the follow-

ing example, with initially the view vi(gx) = fx1; x2; x3g and the primary x1

(Fig. 4):

{ The primary x1 receives an invocation, handles it, and crashes while sending

the update message to the backups x2 and x3. The update message is only

received by x2.

{ A new view vi+1(gx) = fx2; x3g is de�ned, and x2 becomes the new primary.

The states of x2 and x3 are however inconsistent.

www.manaraa.com

group g x

i+1
v (g) = { x , x }

x
2 3

x op(arg) pi

invocation

update

CRASH
X

ack

v (g) = { x , x , x }i x
1 2 3

1primary: replica x

backup: replica x 2

backup: replica x 3

client process p
i

Fig. 4. Primary-backup technique: the atomicity problem (the vertical dotted lines

represent the time at which a view is delivered to the replicas)

The inconsistency is due to the non-atomicity of the \update" multicast sent

by the primary to the backups: the \update" message might be received by

some, but not all, of the backups. The inconsistency is avoided if, whenever

the primary sends the update message to the backups, either all or none of the

correct backups receive the message. This atomicity semantics, in the context of

a dynamic membership, is called view synchronous multicast [7, 32]. We start by

de�ning view synchronous multicast, noted VSCAST, and then we show how this

semantics ensures consistency of the replicas in the primary-backup technique.

View synchronous multicast. Consider a dynamic group gx, and a sequence

of views : : : ; vi(gx); vi+1(gx); : : :. Let t
k(i) be the local time at which a replica xk

delivers a message containing the composition of the view vi(gx). From tk(i) on,

xk time-stamps all its message with the current view number i. Assume further

that every message m(i), time-stamped with the view number i, is multicast to

all the members of the view vi(gx). Let vi+1(gx) be the next view. Then either all

the replicas in vi(gx) \ vi+1(gx) deliver m(i) before delivering vi+1(gx), or none

of them deliver m(i). Figure 5 illustrates the de�nition. The view synchronous

multicast property is satis�ed in scenario 1, but neither in scenario 2 nor in

scenario 3. In scenario 2, x2 delivers m(i) whereas x3 does not. In scenario 3,

x3 delivers m(i), but only after delivering the new view, hence violating the

de�nition of view synchronous multicast (or VSCAST).

To understand that VSCAST actually de�nes an atomicity condition, de�ne

a replica xk in vi(gx) to be \correct" if and only if xk is also in the next view

vi+1(gx). View atomicity ensures that, given a message m(i) multicast to the

members of vi(gx), either m(i) is delivered by all the correct members of vi(gx),

or by none of them. Therefore, if the primary of view vi(gx) crashes, and a new

view vi+1(gx) is de�ned, either all the replicas in vi+1(gx), or none of them,

deliver the last \update" message of the primary. All the replicas in the new

www.manaraa.com

group g x

i
1 2 3

v (g) = {x , x , x }
x i+1

v (g) = { x , x }
x

2 3

x1

x2

x 3

m(i)

SCENARIO 1

group g x

i
1 2 3

v (g) = {x , x , x }x i+1
v (g) = { x , x }

x
2 3

x1

x2

x 3

m(i)

SCENARIO 2

SCENARIO 3 group g x

i
1 2 3

x i+1
v (g) = { x , x }

x
2 3

x1

x2

x 3

m(i)

v (g) = {x , x , x }

Fig. 5. View synchronous multicast (scenario 1 satis�es the de�nition whereas scenario
2 and 3 do not)

view vi+1(gx) share thus the same state, which ensures consistency.

State transfer. A state transfer mechanism is also required with dynamic groups.

In the case of a static group, the state transfer is requested by the recovering

replica. With dynamic groups, there is no need for a recovering replica xk to ask

for a state transfer. Instead, upon recovery xk calls a join operation. The join

operation launches the view change protocol, leading to the de�nition of a new

view vi+1(gx) including xk. Upon delivery of vi+1(gx), any member of vi(gx),

e.g. the primary of view vi(gx), sends its state to x
k.

5 Implementation issues

We have given, in Section 4, the speci�cation of the total order multicast prim-

itive TOCAST, required by active replication. We have also de�ned the view

www.manaraa.com

synchronous multicast primitive VSCAST, in the context of dynamic groups

and the primary-backup replication technique. We discuss now the implementa-

tion of both multicast primitives.

5.1 Total order multicast in asynchronous systems

Many total order multicast algorithms for the asynchronous system model have

been proposed in the literature [19]. These algorithms can be classi�ed as being

either symmetric or asymmetric: in a symmetric algorithm all processes perform

the same code [6, 25, 10, 4], whereas in an asymmetric algorithm one process

plays a special role, i.e. de�nes the ordering of messages [23, 7]. Asymmetric

algorithms require less phases and are thus more e�cient, but are subject to the

contamination problem [16, 35]. Token based algorithms [11, 3] can be classi�ed

somewhere in between symmetric and asymmetric algorithms.Moreover, some of

these algorithms ([6, 7, 35]) assume the dynamic group model, and an underlying

layer implementing view synchronous multicast.

Total order multicast is however related to one fundamental result of fault-

tolerant distributed computing: the impossibility of solving the consensus prob-

lem in asynchronous systems [13] (consensus is de�ned in Section 5.3). The re-

sult, known as the Fischer-Lynch-Paterson impossibility result (or FLP impos-

sibility result) states that there is no deterministic algorithm that solves consen-

sus in an asynchronous system when even a single process can crash. The result

applies also to the total order multicast, as both problems are equivalent [10].

Equivalence of two problems A and B is de�ned through the concept of reduc-

tion [19]: a problem B reduces to a problem A, if there is an algorithm TA!B
that transforms any algorithm for A into an algorithm for B. Two problems A

and B are equivalent if A reduces to B and B reduces to A. Thus, if two problems

are equivalent, whenever one of the two problems can be solved, the other can

also be solved.

Because consensus and total order multicast are equivalent, there is no al-

gorithm implementing the TOCAST primitive in an asynchronous system when

a single process can crash. This means that, given any algorithm implement-

ing TOCAST, it is always possible to de�ne a run such that one of the three

conditions de�ning TOCAST (Order, Atomicity, Termination) is violated.

We show in Section 5.4 how to get around the FLP impossibility result, by

augmenting the asynchronous system model with unreliable failure detectors. As

we show in Section 5.5, this augmented system model de�nes also the framework

in which the total order multicast problem can be solved, and hence a TOCAST

primitive can be implemented.

5.2 View synchronous multicast in asynchronous systems

View synchronous multicast has been introduced by the Isis system [5]: its im-

plementation uses the output of a group membership protocol [31] that delivers

the sequence of views of the dynamic group model, and a
ush protocol [7]. As

pointed out in [32], the
ush protocol might lead in certain circumstances to

www.manaraa.com

violate the view synchronous multicast de�nition: [32] proposes also a correct

implementation of view synchronous multicast.

However it can be shown that consensus reduces to the view synchronous

multicast problem: whenever the view synchronous multicast problem can be

solved, consensus can also be solved. Hence the FLP impossibility result applies

also to the view synchronous multicast problem (and to the implementation of

the VSCAST primitive). To circumvent this impossibility result, we have also

to consider an asynchronous system model, augmented with unreliable failure

detectors. We sketch in Section 5.6 an algorithm based on consensus, that solves

the view synchronous multicast problem, and thus implements a VSCAST prim-

itive.

5.3 The consensus problem

The previous sections have pointed out the fundamental role played by the con-

sensus problem in fault-tolerant distributed computing. The consensus problem

is de�ned over a set � of processes. Every process pi 2 � proposes initially a

value vi taken from a set of possible values (vi is said to be the initial value of

pi), and the processes in � have to decide on a common value v such that the

following properties hold [10]:

Agreement. No two correct processes decide di�erently.

Validity. If a process decides v, then v was proposed by some process.

Termination. Each correct process eventually decides.

The agreement condition allows incorrect processes to decide di�erently from

correct processes. A stronger version of the consensus problem, called uniform

consensus, forbids incorrect processes to decide di�erently from correct processes.

Uniform consensus, is de�ned by the uniform agreement property:

Uniform agreement. No two processes (correct or not) decide di�erently.

5.4 Failure detectors

In order to overcome the FLP impossibility result, Chandra and Toueg have

proposed to augment the asynchronous system model with the notion of (unreli-

able) failure detector. A failure detector can be seen as a set of (failure detector)

modules Di, one module being attached to every process pi in the system. Each

failure detector moduleDi maintains a list of processes that it currently suspects

to have crashed. "Process pi suspects process pj" at some local time t, means

that at local time t, process pj is in the list of suspected processes maintained by

Di. Suspicions are essentially implemented using time-outs, which means that a

failure detector module Di can make mistakes by incorrectly suspecting a pro-

cess pj . Suspicions are however not stable. If at a given time Di suspects pj, and

later learns that the suspicion was incorrect, then Di removes pj from its list of

suspected processes.

www.manaraa.com

Chandra and Toueg de�ne various classes of failure detectors [10]. Each class

is speci�ed by a completeness property, and an accuracy property. A complete-

ness property puts a condition on the detection of crashed processes, while an

accuracy property restricts the mistakes that a failure detector can make. From

the failure detector classes de�ned by Chandra and Toueg, we consider only the

class of eventually strong failure detectors, noted 3S, de�ned by the following

strong completeness and eventual weak accuracy properties:

Strong completeness. Eventually every crashed process is permanently sus-

pected by every correct process.

Eventual weak accuracy. Eventually some correct process is not suspected

by any correct process.

The 3S failure detector class is important, as any failure detector of this class

allows to solve consensus in an asynchronous system with a majority of correct

processes (i.e. when less then a majority of processes can crash). An algorithm

solving consensus under these assumptions is described in [10]. It has been shown

that 3S is the weakest class that makes it possible to solve consensus in an

asynchronous system with a majority of correct processes [9] 3.

Finally, it has also been shown that any algorithm that solves consensus in

an asynchronous system with unreliable failure detectors, also solves the uni-

form consensus problem [17]. Both problems are thus identical under the above

assumptions.

5.5 Reduction of total order multicast to consensus

We sketch here the Chandra-Toueg algorithm for total order multicast [10]. The

algorithm transforms the total order multicast problem into consensus. Such

a transformation is called a reduction of total order multicast to consensus. It

enables to implement the TOCAST primitive using consensus.

Consider a static group of processes gx, and messages TOCAST to gx. The

algorithm launches multiple, independent, instances of consensus among the pro-

cesses in gx. The various consensus instances are identi�ed by an integer k, and

consensus number k decides on a batch of messages noted batch(k). Each process

pi 2 gx delivers the message in the following order:

{ the messages of batch(k) are delivered before the messages of batch(k + 1);

{ for all k, the messages of batch(k) are delivered in some deterministic order

(e.g. in the order de�ned by their identi�ers).

The various instances of consensus are de�ned as follows. Let m be a message

TOCAST to gx. Message m is �rst multicast to gx (unordered multicast). When

m is received by pi, it is put into pi's bu�er of undelivered messages, noted

undelivi. Whenever pi starts a consensus, say consensus number k, pi's initial

3 Actually, the result is proven for the failure detector class 3W. However, the failure

detector classes 3S and 3W are equivalent [10].

www.manaraa.com

value for consensus number k is the current value of undelivi. Process pi then

executes the consensus algorithm. Once consensus k is solved, i.e. batch(k) is

decided, process pi delivers the messages of batch(k) in some deterministic order,

and removes the messages in batch(k) from undelivi. If at that point undelivi
is non-empty, pi starts consensus number k + 1. Otherwise, pi starts consensus

number k + 1, only once undelivi becomes non-empty.

5.6 Reduction of view synchronous multicast to consensus

The transformation from view synchronous multicast to consensus is more com-

plicated than the transformation of total order multicast to consensus. The main

ideas are sketched here. Additional details can be found in [18], where the re-

duction is presented as an instance of the generic paradigm called Dynamic

Terminating Multicast.

Consider the implementation of view synchronous multicast in a group gx.

The solution consists also in launching multiple, independent, instances of con-

sensus, identi�ed by an integer k. Consensus number k decides however not only

on a batch of messages batch(k), but also on the membership for the next view

vk+1(gx). Each process pi, after learning the decision of consensus number k,

�rst delivers the messages of batch(k) that it has not yet delivered, and then

delivers the next view vk+1(gx). Consensus number k is performed either among

the processes from the initial view v0(gx), or among the processes of the current

view vk(gx)
4.

The various instances of consensus are based on the notion of stable message.

Let m be a message multicast to a view vk(gx): stablei(m), which is a local

predicate, is true if and only if pi knows that every process in vk(gx) has received

m. Whenever some process pi 2 vk(gx) has received a message m, and if after

some time-out period stablei(m) does not hold, then pi multicasts the message

req-view(k + 1) to viewk(gx), in order to launch the consensus number k that

will decide on the next view vk+1(gx). Every process pj 2 vk(gx), when receiving

the req-view(k+1) message, replies by multicasting its non-stable messages: the

reply is multicast to the set of processes that solve the consensus problem number

k. The way the replies are used to de�ne the initial value for the consensus

problem can be found in [18].

6 Concluding remarks

The paper has given a survey of the problems related to achieving fault-tolerance

by replication in distributed systems. Linearizability has been introduced as

the abstract correctness criterion, and \active replication/primary-backup" have

been presented as the two main classes of replication techniques. The total or-

der multicast primitive has then been introduced as the adequate primitive to

support active replication, and the view synchronous multicast primitive has

4 The two options are actually not equivalent, but the di�erence is not discussed here.

www.manaraa.com

been introduced as the adequate primitive to support the primary-backup tech-

nique. Finally, the conceptual di�culty of implementing both primitives in an

asynchronous system has been related to the Fischer-Lynch-Paterson impossi-

bility result about consensus. As shown by Chandra and Toueg, this impossi-

bility result can be overcome by augmenting the asynchronous system model

with unreliable failure detectors that satisfy well de�ned completeness and accu-

racy properties. This de�nes also the framework in which total order multicast

and view synchronous multicast primitives can be implemented. The reduction

to consensus constitutes, in this framework, the right way to implement these

primitives.

The real issue in achieving fault-tolerance by replication is thus related to the

implementation of the group multicast primitives. This has led to the develop-

ment of \group communication platforms", which provide the application pro-

grammer with the adequate multicast primitives required to implement replica-

tion. Isis is the best known among such systems [5]. Initially developed at Cornell

University as an academic project, Isis has later become a commercial product,

marketed �rst by Isis Distributed Systems (IDS) and subsequently by Stratus

Computers. Other platforms that have been built around the world include:

Horus (Cornell University) [34], Transis (Hebrew University, Jerusalem) [26],

Totem (University of California, Santa Barbara) [29], Amoeba (Free University,

Amsterdam) [22], Consul (University of Arizona, Tucson) [28], Delta-4 (Esprit

Project) [30], Phoenix (Federal Institute of Technology, Lausanne) [27]. All these

systems, except Delta-4, assume an asynchronous system model.

Despite the existence of these various platforms, none of them provide the

�nal answer that the application needs. Some of these systems are architectured

in an unnecessarily complex way, some are di�cult to use, some do not o�er the

right abstractions to the application programmer, some do not ensure correctness

in some speci�c scenario cases, and �nally most of them do not provide precise

characterization of the conditions under which liveness is ensured in the system.

The design and implementation of adequate group communication platforms

remains an interesting active research area.

References

1. A. El Abbadi and S. Toueg. Maintaining Availability in Partitioned Replicated

Databases. ACM Trans. on Database Systems, 14(2):264{290, June 1989.
2. M. Ahamad, P.W. Hutto, G. Neiger, J.E. Burns, and P. Kohli. Causal Memory:

De�nitions, Implementations and Programming. TR GIT-CC-93/55, Georgia In-

stitute of Technology, July 94.
3. Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, and P.Ciarfella. Fast

Message Ordering and Membership Using a Logical Token-Passing Ring. In IEEE

13th Intl. Conf. Distributed Computing Systems, pages 551{560, May 1993.
4. E. Auceaume. Algorithmique de Fiabilisation de Syst�emes R�epartis. PhD thesis,

Universit�e de Paris-Sud, Centre d'Orsay, January 1993.

5. K. Birman. The Process Group Approach to Reliable Distributed Computing.

Comm. ACM, 36(12):37{53, December 1993.

www.manaraa.com

6. K. Birman and T. Joseph. Reliable Communication in the Presence of Failures.
ACM Trans. on Computer Systems, 5(1):47{76, February 1987.

7. K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group

Multicast. ACM Trans. on Computer Systems, 9(3):272{314, August 1991.
8. N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. The Primary-Backup

Approach. In Sape Mullender, editor, Distributed Systems, pages 199{216. ACM

Press, 1993.
9. T.D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for

Solving Consensus. Technical report, Department of Computer Science, Cornell

University, May 1994. A preliminary version appeared in the Proceedings of the
Eleventh ACM Symposium on Principles of Distributed Computing, pages 147{158.

ACM Press, August 1992.

10. T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Technical Report 95-1535, Department of Computer Science, Cornell

University, August 1995. A preliminary version appeared in the Proceedings of the

Tenth ACM Symposium on Principles of Distributed Computing, pages 325{340.
ACM Press, August 1991.

11. J. M. Chang and N. Maxemchuck. Reliable Broadcast Protocols. ACM Trans. on

Computer Systems, 2(3):251{273, August 1984.
12. D. Davcec and A. Burkhard. Consistency and Recovery Control for Replicated

Files. In Proceedings of the 10th Symposium on Operating Systems Principles,

pages 87{96, 1985.
13. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus

with One Faulty Process. Journal of ACM, 32:374{382, April 1985.

14. D.K. Gi�ord. Weighted Voting for Replicated Data. In Proceedings of the 7th
Symposium on Operating Systems Principles, pages 150{159, December 1979.

15. N. Goodmand, D. Skeen, A. Chan, U. Dayal, S. Fox, and D. Ries. A recovery al-

gorithm for a distributed database system. In Proc. of the 2nd ACM SIGATC-
SIGMOD Symposium on Principles of Database Systems, March 1983.

16. A. S. Gopal. Fault-Tolerant Broadcast and Multicasts: The Problem of Inconsis-

tency and Contamination. PhD thesis, Cornell University, Ithaca, NY, March
1992.

17. R. Guerraoui. Revisiting the relationship between non-blocking atomic commit-

ment and consensus. In 9th Intl. Workshop on Distributed Algorithms (WDAG-9),
pages 87{100. Springer Verlag, LNCS 972, September 1995.

18. R. Guerraoui and A. Schiper. Transaction model vs Virtual Synchrony Model:

bridging the gap. In Theory and Practice in Distributed Systems, pages 121{132.
Springer Verlag, LNCS 938, 1995.

19. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In

Sape Mullender, editor, Distributed Systems, pages 97{145. ACM Press, 1993.
20. M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types.

ACM Trans. on Computer Systems, 4(1):32{53, February 1986.
21. M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent

objects. ACM Trans. on Progr. Languages and Syst., 12(3):463{492, 1990.

22. M. F. Kaashoek and A. S. Tanenbaum. Group Communication in the Amoeba
Distributed Operating System. In IEEE 11th Intl. Conf. Distributed Computing

Systems, pages 222{230, May 1991.

23. M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An E�cient
Reliable Broadcast Protocol. Operating Systems Review, 23(4):5{19, October 1989.

www.manaraa.com

24. L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. on Computers, C28(9):690{691, 1979.

25. S. W. Luan and V. D. Gligor. A Fault-Tolerant Protocol for Atomic Broadcast.

IEEE Trans. Parallel & Distributed Syst., 1(3):271{285, July 90.
26. D. Malki, Y. Amir, D. Dolev, and S. Kramer. The Transis approach to high avail-

able cluster communication. Technical Report CS-94-14, Institute of Computer

Science, The Hebrew University of Jerusalem, 1994.
27. C. Malloth. Conception and Implementation of a Toolkit for Building Fault-

Tolerant Distributed Applications in Large Scale Networks. PhD thesis, Federal

Institute of Technology, Lausanne (EPFL), 1996. To appear.
28. S. Mishra, L.L. Peterson, and R. D. Schlichting. Consul: a communication sub-

strate for fault-tolerant distributed programs. Distributed Systems Engineering

Journal, 1:87{103, 1993.
29. L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended Virtual Syn-

chrony. In IEEE 14th Intl. Conf. Distributed Computing Systems, pages 56{67,

June 1994.
30. D. Powell, editor. Delta-4: A Generic Architecture for Dependable Distributed

Computing. Springer-Verlag, 1991.

31. A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure
Detection in Asynchronous Environments. In Proc. of the 10th ACM Symposium

on Principles of Distributed Computing, pages 341{352, August 1991.

32. A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Synchronous
Environment. In IEEE 13th Intl. Conf. Distributed Computing Systems, pages

561{568, May 1993.

33. F.B. Schneider. Replication Management using the State-Machine Approach. In
Sape Mullender, editor, Distributed Systems, pages 169{197. ACM Press, 1993.

34. R. van Renesse, K. Birman, R. Cooper, B. Glade, and P. Stephenson. The Horus

System. In K. Birman and R. van Renesse, editors, Reliable Distributed Computing
with the Isis Toolkit, pages 133{147. IEEE Computer Society Press, 1993.

35. U. Wilhelm and A. Schiper. A Hierarchy of Totally Ordered Multicasts. In 14th

IEEE Symp. on Reliable Distributed Systems (SRDS-14), pages 106{115, Bad
Neuenahr, Germany, September 1995.

